Spectral receptive field properties of visually active neurons in the caudate nucleus.
نویسندگان
چکیده
Recent studies stress the importance of the caudate nucleus in visual information processing. Although the processing of moving visual signals depends upon the capability of a system to integrate spatial and temporal information, no study has investigated the spectral receptive field organization of the caudate nucleus neurons yet. Therefore, we tested caudate neurons of the feline brain by extracellular single-cell recording applying drifting sinewave gratings of various spatial and temporal frequencies, and reconstructed their spectral receptive fields by plotting their responsiveness as a function of different combinations of spatial and temporal frequencies. The majority of the caudate cells (74%) exhibited peak tuning, which means that their spatio-temporal frequency response profile had a characteristic region of increased activity with a single maximum in the spatio-temporal frequency domain. In one-quarter of the recorded caudate neurons ridge tuning was found, where the region of increased activity, forming an elongated ridge of maximal sensitivity parallel or angled to the spatial or the temporal frequency axis, indicating temporal (16%), spatial (5%) or speed (5%) tuning, respectively. The velocity preference of the ridge tuned caudate nucleus neurons is significantly lower than that of the peak tuned neurons. The peak tuned neuron could encode high velocities, while the ridge tuned neurons were responsible for the detection of moderate and lower velocities. Based upon our results, we suggest that the wide variety of spatio-temporal frequency response profiles might represent different functional neuronal groups within the caudate nucleus that subserve different behaviors to meet various environmental requirements.
منابع مشابه
اثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورونهای لایه IV و V قشر بارل (بشکهای) در موش صحرایی
Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...
متن کاملThe Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملNonlinear temporal receptive fields of neurons in the dorsal cochlear nucleus.
Studies of the dorsal cochlear nucleus (DCN) have focused on spectral processing because of the complex spectral receptive fields of the DCN. However, temporal fluctuations in natural signals convey important information, including information about moving sound sources or movements of the external ear in animals like cats. Here, we investigate the temporal filtering properties of DCN principal...
متن کاملEffects of stimulus spectral contrast on receptive fields of dorsal cochlear nucleus neurons.
Neurons in the dorsal cochlear nucleus (DCN) exhibit strong nonlinearities in spectral processing. Low-order models that transform the stimulus spectrum into discharge rate using a combination of first- and second-order weighting of the spectrum (quadratic models) usually fail to predict responses to novel stimuli for principal neurons in the DCN, even though they work well in ventral cochlear ...
متن کاملThe Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience letters
دوره 480 2 شماره
صفحات -
تاریخ انتشار 2010